Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2309000121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547067

RESUMO

Apneic events are frightening but largely benign events that often occur in infants. Here, we report apparent life-threatening apneic events in an infant with the homozygous SCN1AL263V missense mutation, which causes familial hemiplegic migraine type 3 in heterozygous family members, in the absence of epilepsy. Observations consistent with the events in the infant were made in an Scn1aL263V knock-in mouse model, in which apnea was preceded by a large brainstem DC-shift, indicative of profound brainstem depolarization. The L263V mutation caused gain of NaV1.1 function effects in transfected HEK293 cells. Sodium channel blockade mitigated the gain-of-function characteristics, rescued lethal apnea in Scn1aL263V mice, and decreased the frequency of severe apneic events in the patient. Hence, this study shows that SCN1AL263V can cause life-threatening apneic events, which in a mouse model were caused by profound brainstem depolarization. In addition to being potentially relevant to sudden infant death syndrome pathophysiology, these data indicate that sodium channel blockers may be considered therapeutic for apneic events in patients with these and other gain-of-function SCN1A mutations.


Assuntos
Apneia , Mutação com Ganho de Função , Bloqueadores dos Canais de Sódio , Animais , Humanos , Camundongos , Apneia/tratamento farmacológico , Apneia/genética , Tronco Encefálico , Células HEK293 , Enxaqueca com Aura/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Bloqueadores dos Canais de Sódio/uso terapêutico , Lactente , Feminino
2.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410936

RESUMO

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Convulsões Febris , Estado Epiléptico , Humanos , Estudos Retrospectivos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsias Mioclônicas/genética , Convulsões Febris/genética , Fenótipo , Estudos de Associação Genética , Mutação/genética
3.
Brain Commun ; 6(1): fcae004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229878

RESUMO

Dravet syndrome is a severe infantile onset developmental and epileptic encephalopathy associated with mutations in the sodium channel alpha 1 subunit gene SCN1A. Prospective data on long-term developmental and clinical outcomes are limited; this study seeks to evaluate the clinical course of Dravet syndrome over a 10-year period and identify predictors of developmental outcome. SCN1A mutation-positive Dravet syndrome patients were prospectively followed up in the UK from 2010 to 2020. Caregivers completed structured questionnaires on clinical features and disease burden; the Epilepsy & Learning Disability Quality of Life Questionnaire, the Adaptive Behavioural Assessment System-3 and the Sleep Disturbance Scale for Children. Sixty-eight of 113 caregivers (60%) returned posted questionnaires. Developmental outcome worsened at follow-up (4.45 [SD 0.65], profound cognitive impairment) compared to baseline (2.9 [SD 1.1], moderate cognitive impairment, P < 0.001), whereas epilepsy severity appeared less severe at 10-year follow-up (P = 0.042). Comorbidities were more apparent at 10-year outcome including an increase in autistic features (77% [48/62] versus 30% [17/57], χ2 = 19.9, P < 0.001), behavioural problems (81% [46/57] versus 38% [23/60], χ2 = 14.1, P < 0.001) and motor/mobility problems (80% [51/64] versus 41% [24/59], χ2 = 16.9, P < 0.001). Subgroup analysis demonstrated a more significant rise in comorbidities in younger compared to older patients. Predictors of worse long-term developmental outcome included poorer baseline language ability (P < 0.001), more severe baseline epilepsy severity (P = 0.003) and a worse SCN1A genetic score (P = 0.027). Sudden unexpected death in epilepsy had not been discussed with a medical professional in 35% (24/68) of participants. Over 90% of caregivers reported a negative impact on their own health and career opportunities. Our study identifies important predictors and potential biomarkers of developmental outcome in Dravet syndrome and emphasizes the significant caregiver burden of illness. The negative impact of epilepsy severity at baseline on long-term developmental outcomes highlights the importance of implementing early and focused therapies whilst the potential impact of newer anti-seizure medications requires further study.

4.
Epilepsia ; 65(2): 322-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049202

RESUMO

OBJECTIVE: Dravet syndrome (DS) is a developmental and epileptic encephalopathy characterized by high seizure burden, treatment-resistant epilepsy, and developmental stagnation. Family members rate communication deficits among the most impactful disease manifestations. We evaluated seizure burden and language/communication development in children with DS. METHODS: ENVISION was a prospective, observational study evaluating children with DS associated with SCN1A pathogenic variants (SCN1A+ DS) enrolled at age ≤5 years. Seizure burden and antiseizure medications were assessed every 3 months and communication and language every 6 months with the Bayley Scales of Infant and Toddler Development 3rd edition and the parent-reported Vineland Adaptive Behavior Scales 3rd edition. We report data from the first year of observation, including analyses stratified by age at Baseline: 0:6-2:0 years:months (Y:M; youngest), 2:1-3:6 Y:M (middle), and 3:7-5:0 Y:M (oldest). RESULTS: Between December 2020 and March 2023, 58 children with DS enrolled at 16 sites internationally. Median follow-up was 17.5 months (range = .0-24.0), with 54 of 58 (93.1%) followed for at least 6 months and 51 of 58 (87.9%) for 12 months. Monthly countable seizure frequency (MCSF) increased with age (median [minimum-maximum] = 1.0 in the youngest [1.0-70.0] and middle [1.0-242.0] age groups and 4.5 [.0-2647.0] in the oldest age group), and remained high, despite use of currently approved antiseizure medications. Language/communication delays were observed early, and developmental stagnation occurred after age 2 years with both instruments. In predictive modeling, chronologic age was the only significant covariate of seizure frequency (effect size = .52, p = .024). MCSF, number of antiseizure medications, age at first seizure, and convulsive status epilepticus were not predictors of language/communication raw scores. SIGNIFICANCE: In infants and young children with SCN1A+ DS, language/communication delay and stagnation were independent of seizure burden. Our findings emphasize that the optimal therapeutic window to prevent language/communication delay is before 3 years of age.


Assuntos
Epilepsias Mioclônicas , Lactente , Humanos , Pré-Escolar , Recém-Nascido , Estudos Prospectivos , Mutação , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/complicações , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/complicações , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Comunicação
5.
Lancet Neurol ; 22(12): 1113-1124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977712

RESUMO

BACKGROUND: Many infancy-onset epilepsies have poor prognosis for seizure control and neurodevelopmental outcome. Ketogenic diets can improve seizures in children older than 2 years and adults who are unresponsive to antiseizure medicines. We aimed to establish the efficacy of a classic ketogenic diet at reducing seizure frequency compared with further antiseizure medicine in infants with drug-resistant epilepsy. METHODS: In this phase 4, open-label, multicentre, randomised clinical trial, infants aged 1-24 months with drug-resistant epilepsy (defined as four or more seizures per week and two or more previous antiseizure medications) were recruited from 19 hospitals in the UK. Following a 1-week or 2-week observation period, participants were randomly assigned using a computer-generated schedule, without stratification, to either a classic ketogenic diet or a further antiseizure medication for 8 weeks. Treatment allocation was masked from research nurses involved in patient care, but not from participants. The primary outcome was the median number of seizures per day, recorded during weeks 6-8. All analyses were by modified intention to treat, which included all participants with available data. Participants were followed for up to 12 months. All serious adverse events were recorded. The trial is registered with the European Union Drug Regulating Authorities Clinical Trials Database (2013-002195-40). The trial was terminated early before all participants had reached 12 months of follow-up because of slow recruitment and end of funding. FINDINGS: Between Jan 1, 2015, and Sept 30, 2021, 155 infants were assessed for eligibility, of whom 136 met inclusion criteria and were randomly assigned; 75 (55%) were male and 61 (45%) were female. 78 infants were assigned to a ketogenic diet and 58 to antiseizure medication, of whom 61 and 47, respectively, had available data and were included in the modifified intention-to-treat analysis at week 8. The median number of seizures per day during weeks 6-8, accounting for baseline rate and randomised group, was similar between the ketogenic diet group (5 [IQR 1-16]) and antiseizure medication group (3 [IQR 2-11]; IRR 1·33, 95% CI 0·84-2·11). A similar number of infants with at least one serious adverse event was reported in both groups (40 [51%] of 78 participants in the ketogenic diet group and 26 [45%] of 58 participants in the antiseizure medication group). The most common serious adverse events were seizures in both groups. Three infants died during the trial, all of whom were randomly assigned a ketogenic diet: one child (who also had dystonic cerebral palsy) was found not breathing at home; one child died suddenly and unexpectedly at home; and one child went into cardiac arrest during routine surgery under anaesthetic. The deaths were judged unrelated to treatment by local principal investigators and confirmed by the data safety monitoring committee. INTERPRETATION: In this phase 4 trial, a ketogenic diet did not differ in efficacy and tolerability to a further antiseizure medication, and it appears to be safe to use in infants with drug-resistant epilepsy. A ketogenic diet could be a treatment option in infants whose seizures continue despite previously trying two antiseizure medications. FUNDING: National Institute for Health and Care Research.


Assuntos
Dieta Cetogênica , Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Adulto , Humanos , Masculino , Lactente , Feminino , Pré-Escolar , Dieta Cetogênica/efeitos adversos , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Convulsões/tratamento farmacológico , Reino Unido , Resultado do Tratamento
6.
Epilepsia Open ; 8(4): 1256-1270, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750463

RESUMO

We performed a systematic literature review and narrative synthesis according to a pre-registered protocol (Prospero: CRD42022376561) to identify the evidence associated with the burden of illness in Dravet syndrome (DS), a developmental and epileptic encephalopathy characterized by drug-resistant epilepsy with neurocognitive and neurobehavioral impairment. We searched MEDLINE, Embase, and APA PsychInfo, Cochrane's database of systematic reviews, and Epistemonikos from inception to June 2022. Non-interventional studies reporting on epidemiology (incidence, prevalence, and mortality), patient and caregiver health-related quality of life (HRQoL), direct and indirect costs and healthcare resource utilization were eligible. Two reviewers independently carried out the screening. Pre-specified data were extracted and a narrative synthesis was conducted. Overall, 49 studies met the inclusion criteria. The incidence varied from 1:15 400-1:40 900, and the prevalence varied from 1.5 per 100 000 to 6.5 per 100 000. Mortality was reported in 3.7%-20.8% of DS patients, most commonly due to sudden unexpected death in epilepsy and status epilepticus. Patient HRQoL, assessed by caregivers, was lower than in non-DS epilepsy patients; mean scores (0 [worst] to 100/1 [best]) were 62.1 for the Kiddy KINDL/Kid-KINDL, 46.5-54.7 for the PedsQL and 0.42 for the EQ-5D-5L. Caregivers, especially mothers, were severely affected, with impacts on their time, energy, sleep, career, and finances, while siblings were also affected. Symptoms of depression were reported in 47%-70% of caregivers. Mean total direct costs were high across all studies, ranging from $11 048 to $77 914 per patient per year (PPPY), with inpatient admissions being a key cost driver across most studies. Mean costs related to lost productivity were only reported in three publications, ranging from approximately $19 000 to $20 000 PPPY ($17 596 for mothers vs $1564 for fathers). High seizure burden was associated with higher resource utilization, costs and poorer HRQoL. The burden of DS on patients, caregivers, the healthcare system, and society is profound, reflecting the severe nature of the syndrome. Future studies will be able to assess the impact that newly approved therapies have on reducing the burden of DS.


Assuntos
Epilepsias Mioclônicas , Qualidade de Vida , Humanos , Qualidade de Vida/psicologia , Revisões Sistemáticas como Assunto , Efeitos Psicossociais da Doença , Aceitação pelo Paciente de Cuidados de Saúde
7.
Epilepsia ; 64(11): 2909-2913, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562820

RESUMO

The recent explosion of epilepsy genetic testing has created challenges for interpretation of gene variants. Assessments of the functional consequences of genetic variants either by predictive or experimental strategies can contribute to estimating pathogenicity, but there is no consensus on which approach is best. The Special Interest Group on Epilepsy Genetics hosted a session during the Annual American Epilepsy Society Meeting in December 2022 to discuss this topic. The session featured a debate of the relative advantages and limitations of predicting (prophecy) versus experimentally determining (empiricism) variant function using ion channel gene variants as examples. This commentary summarizes these discussions.


Assuntos
Epilepsia , Variação Genética , Humanos , Variação Genética/genética , Empirismo , Testes Genéticos , Epilepsia/diagnóstico , Epilepsia/genética
9.
Brain ; 146(9): 3885-3897, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37006128

RESUMO

Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. The polygenic risk score for intelligence was lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Epilepsia/genética , Fenótipo , Genômica
10.
Epilepsia ; 64(4): 1012-1020, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740581

RESUMO

OBJECTIVE: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy, leading to reduced health-related quality of life (HRQOL). Prospective outcome data on HRQOL are sparse, and this study investigated long-term predictors of HRQOL in DS. METHODS: One hundred thirteen families of SCN1A-positive patients with DS, who were recruited as part of our 2010 study were contacted at 10-year follow-up, of which 68 (60%) responded. The mortality was 5.8%. Detailed clinical and demographic information was available for each patient. HRQOL was evaluated with two epilepsy-specific instruments, the Impact of Pediatric Epilepsy Scale (IPES) and the Epilepsy & Learning Disabilities Quality of Life Questionnaire (ELDQOL); a generic HRQOL instrument, the Pediatric Quality of Life Inventory (PedsQL); and a behavioral screening tool, the Strength and Difficulties Questionnaire (SDQ). RESULTS: Twenty-eight patients were 10-15 years of age (0-5 years at baseline) and 40 were ≥16 years of age (≥6 years at baseline). Patients 0- to 5-years-old at baseline showed a significant decline in mean scores on the PedsQL total score (p = .004), physical score (p < .001), cognitive score (p = .011), social score (p = .003), and eating score (p = .030) at follow-up. On multivariate regression, lower baseline and follow-up HRQOL for the whole cohort were associated with worse epilepsy severity and a high SDQ total score (R2  = 33% and 18%, respectively). In the younger patient group, younger age at first seizure and increased severity of epilepsy were associated with a lower baseline HRQOL (R2  = 35%). In the older age group, worse epilepsy severity (F = 6.40, p = .016, R2  = 14%) and the use of sodium-channel blockers were independently associated with a lower HRQOL at 10-year follow-up (F = 4.13, p = .05, R2  = 8%). SIGNIFICANCE: This 10-year, prospective follow-up study highlights the significant HRQOL-associated cognitive, social, and physical decline particularly affecting younger patients with DS. Sodium channel blocker use appears to negatively impact long-term HRQOL, highlighting the importance of early diagnosis and disease-specific management in DS.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Criança , Humanos , Idoso , Recém-Nascido , Lactente , Pré-Escolar , Seguimentos , Estudos Prospectivos , Qualidade de Vida/psicologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/diagnóstico , Epilepsia/diagnóstico
11.
Brain ; 146(2): 519-533, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36256779

RESUMO

Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Criança , Transtornos do Neurodesenvolvimento/genética , Testes Genéticos , Mutação/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto
12.
Brain ; 146(3): 923-934, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036558

RESUMO

Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.


Assuntos
Receptores de N-Metil-D-Aspartato , Convulsões , Humanos , Virulência , Fenótipo , Receptores de N-Metil-D-Aspartato/genética , Biofísica
13.
Brain ; 145(11): 3816-3831, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696452

RESUMO

Brain voltage-gated sodium channel NaV1.1 (SCN1A) loss-of-function variants cause the severe epilepsy Dravet syndrome, as well as milder phenotypes associated with genetic epilepsy with febrile seizures plus. Gain of function SCN1A variants are associated with familial hemiplegic migraine type 3. Novel SCN1A-related phenotypes have been described including early infantile developmental and epileptic encephalopathy with movement disorder, and more recently neonatal presentations with arthrogryposis. Here we describe the clinical, genetic and functional evaluation of affected individuals. Thirty-five patients were ascertained via an international collaborative network using a structured clinical questionnaire and from the literature. We performed whole-cell voltage-clamp electrophysiological recordings comparing sodium channels containing wild-type versus variant NaV1.1 subunits. Findings were related to Dravet syndrome and familial hemiplegic migraine type 3 variants. We identified three distinct clinical presentations differing by age at onset and presence of arthrogryposis and/or movement disorder. The most severely affected infants (n = 13) presented with congenital arthrogryposis, neonatal onset epilepsy in the first 3 days of life, tonic seizures and apnoeas, accompanied by a significant movement disorder and profound intellectual disability. Twenty-one patients presented later, between 2 weeks and 3 months of age, with a severe early infantile developmental and epileptic encephalopathy and a movement disorder. One patient presented after 3 months with developmental and epileptic encephalopathy only. Associated SCN1A variants cluster in regions of channel inactivation associated with gain of function, different to Dravet syndrome variants (odds ratio = 17.8; confidence interval = 5.4-69.3; P = 1.3 × 10-7). Functional studies of both epilepsy and familial hemiplegic migraine type 3 variants reveal alterations of gating properties in keeping with neuronal hyperexcitability. While epilepsy variants result in a moderate increase in action current amplitude consistent with mild gain of function, familial hemiplegic migraine type 3 variants induce a larger effect on gating properties, in particular the increase of persistent current, resulting in a large increase of action current amplitude, consistent with stronger gain of function. Clinically, 13 out of 16 (81%) gain of function variants were associated with a reduction in seizures in response to sodium channel blocker treatment (carbamazepine, oxcarbazepine, phenytoin, lamotrigine or lacosamide) without evidence of symptom exacerbation. Our study expands the spectrum of gain of function SCN1A-related epilepsy phenotypes, defines key clinical features, provides novel insights into the underlying disease mechanisms between SCN1A-related epilepsy and familial hemiplegic migraine type 3, and identifies sodium channel blockers as potentially efficacious therapies. Gain of function disease should be considered in early onset epilepsies with a pathogenic SCN1A variant and non-Dravet syndrome phenotype.


Assuntos
Artrogripose , Epilepsias Mioclônicas , Epilepsia , Enxaqueca com Aura , Transtornos dos Movimentos , Espasmos Infantis , Humanos , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/diagnóstico , Epilepsia/genética , Epilepsia/diagnóstico , Mutação com Ganho de Função , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Recém-Nascido , Lactente
14.
Eur J Med Genet ; 65(7): 104531, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618197

RESUMO

In the last few years, with the advent of next generation sequencing (NGS), our knowledge of genes associated with monogenic epilepsies has significantly improved. NGS is also a powerful diagnostic tool for patients with epilepsy, through gene panels, exomes and genomes. This has improved diagnostic yield, reducing the time between the first seizure and a definitive molecular diagnosis. However, these developments have also increased the complexity of data interpretation, due to the large number of variants identified in a given patient and due to the phenotypic variability associated with many of the epilepsy-related genes. In this paper, we present examples of variant classification in "real life" clinic situations. We emphasize the importance of accurate phenotyping of the epilepsies including recognising variable/milder phenotypes and expansion of previously described phenotypes. There are some important issues specific to rare epilepsies - mosaicism and reduced penetrance - which affect genetic counselling. These challenges may be overcome through multidisciplinary meetings including epileptologists, pediatric neurologists, and clinical and molecular geneticists, in which every specialist learns from the others in a process which leads to for rapid and accurate diagnosis. This is an important milestone to achieve as targeted therapiesbased on the functional effects of pathogenic variants become available.


Assuntos
Epilepsia , Epilepsia/diagnóstico , Epilepsia/genética , Exoma , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mosaicismo , Fenótipo
15.
Neurology ; 98(11): e1163-e1174, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074891

RESUMO

BACKGROUND AND OBJECTIVES: Pathogenic variants in the neuronal sodium channel α1 subunit gene (SCN1A) are the most frequent monogenic cause of epilepsy. Phenotypes comprise a wide clinical spectrum, including severe childhood epilepsy; Dravet syndrome, characterized by drug-resistant seizures, intellectual disability, and high mortality; and the milder genetic epilepsy with febrile seizures plus (GEFS+), characterized by normal cognition. Early recognition of a child's risk for developing Dravet syndrome vs GEFS+ is key for implementing disease-modifying therapies when available before cognitive impairment emerges. Our objective was to develop and validate a prediction model using clinical and genetic biomarkers for early diagnosis of SCN1A-related epilepsies. METHODS: We performed a retrospective multicenter cohort study comprising data from patients with SCN1A-positive Dravet syndrome and patients with GEFS+ consecutively referred for genetic testing (March 2001-June 2020) including age at seizure onset and a newly developed SCN1A genetic score. A training cohort was used to develop multiple prediction models that were validated using 2 independent blinded cohorts. Primary outcome was the discriminative accuracy of the model predicting Dravet syndrome vs other GEFS+ phenotypes. RESULTS: A total of 1,018 participants were included. The frequency of Dravet syndrome was 616/743 (83%) in the training cohort, 147/203 (72%) in validation cohort 1, and 60/72 (83%) in validation cohort 2. A high SCN1A genetic score (133.4 [SD 78.5] vs 52.0 [SD 57.5]; p < 0.001) and young age at onset (6.0 [SD 3.0] vs 14.8 [SD 11.8] months; p < 0.001) were each associated with Dravet syndrome vs GEFS+. A combined SCN1A genetic score and seizure onset model separated Dravet syndrome from GEFS+ more effectively (area under the curve [AUC] 0.89 [95% CI 0.86-0.92]) and outperformed all other models (AUC 0.79-0.85; p < 0.001). Model performance was replicated in both validation cohorts 1 (AUC 0.94 [95% CI 0.91-0.97]) and 2 (AUC 0.92 [95% CI 0.82-1.00]). DISCUSSION: The prediction model allows objective estimation at disease onset whether a child will develop Dravet syndrome vs GEFS+, assisting clinicians with prognostic counseling and decisions on early institution of precision therapies (http://scn1a-prediction-model.broadinstitute.org/). CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that a combined SCN1A genetic score and seizure onset model distinguishes Dravet syndrome from other GEFS+ phenotypes.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Criança , Estudos de Coortes , Diagnóstico Precoce , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Estudos Retrospectivos
16.
Brain ; 145(12): 4275-4286, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35037686

RESUMO

Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).


Assuntos
Canalopatias , Epilepsia , Doenças do Sistema Nervoso Periférico , Canais de Sódio Disparados por Voltagem , Animais , Canalopatias/genética , Canais de Sódio Disparados por Voltagem/genética , Epilepsia/genética , Fenótipo , Mamíferos
17.
Brain ; 144(9): 2879-2891, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34687210

RESUMO

Epilepsies of early childhood are frequently resistant to therapy and often associated with cognitive and behavioural comorbidity. Aetiology focused precision medicine, notably gene-based therapies, may prevent seizures and comorbidities. Epidemiological data utilizing modern diagnostic techniques including whole genome sequencing and neuroimaging can inform diagnostic strategies and therapeutic trials. We present a 3-year, multicentre prospective cohort study, involving all children under 3 years of age in Scotland presenting with epilepsies. We used two independent sources for case identification: clinical reporting and EEG record review. Capture-recapture methodology was then used to improve the accuracy of incidence estimates. Socio-demographic and clinical details were obtained at presentation, and 24 months later. Children were extensively investigated for aetiology. Whole genome sequencing was offered for all patients with drug-resistant epilepsy for whom no aetiology could yet be identified. Multivariate logistic regression modelling was used to determine associations between clinical features, aetiology, and outcome. Three hundred and ninety children were recruited over 3 years. The adjusted incidence of epilepsies presenting in the first 3 years of life was 239 per 100 000 live births [95% confidence interval (CI) 216-263]. There was a socio-economic gradient to incidence, with a significantly higher incidence in the most deprived quintile (301 per 100 000 live births, 95% CI 251-357) compared with the least deprived quintile (182 per 100 000 live births, 95% CI 139-233), χ2 odds ratio = 1.7 (95% CI 1.3-2.2). The relationship between deprivation and incidence was only observed in the group without identified aetiology, suggesting that populations living in higher deprivation areas have greater multifactorial risk for epilepsy. Aetiology was determined in 54% of children, and epilepsy syndrome was classified in 54%. Thirty-one per cent had an identified genetic cause for their epilepsy. We present novel data on the aetiological spectrum of the most commonly presenting epilepsies of early childhood. Twenty-four months after presentation, 36% of children had drug-resistant epilepsy (DRE), and 49% had global developmental delay (GDD). Identification of an aetiology was the strongest determinant of both DRE and GDD. Aetiology was determined in 82% of those with DRE, and 75% of those with GDD. In young children with epilepsy, genetic testing should be prioritized as it has the highest yield of any investigation and is most likely to inform precision therapy and prognosis. Epilepsies in early childhood are 30% more common than previously reported. Epilepsies of undetermined aetiology present more frequently in deprived communities. This likely reflects increased multifactorial risk within these populations.


Assuntos
Epilepsia/classificação , Epilepsia/epidemiologia , Fatores Socioeconômicos , Causalidade , Pré-Escolar , Estudos de Coortes , Epilepsia Resistente a Medicamentos/classificação , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/epidemiologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Escócia/epidemiologia
19.
Epilepsia Open ; 6(1): 62-72, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681649

RESUMO

Febrile infection-related epilepsy syndrome (FIRES) is a rare catastrophic epileptic encephalopathy that presents suddenly in otherwise normal children and young adults causing significant neurological disability, chronic epilepsy, and high rates of mortality. To suggest a therapy protocol to improve outcome of FIRES, workshops were held in conjunction with American Epilepsy Society annual meeting between 2017 and 2019. An international group of pediatric epileptologists, pediatric neurointensivists, rheumatologists and basic scientists with interest and expertise in FIRES convened to propose an algorithm for a standardized approach to the diagnosis and treatment of FIRES. The broad differential for refractory status epilepticus (RSE) should include FIRES, to allow empiric therapies to be started early in the clinical course. FIRES should be considered in all previously healthy patients older than two years of age who present with explosive onset of seizures rapidly progressing to RSE, following a febrile illness in the preceding two weeks. Once FIRES is suspected, early administrations of ketogenic diet and anakinra (the IL-1 receptor antagonist that blocks biologic activity of IL-1ß) are recommended.


Assuntos
Epilepsia Resistente a Medicamentos , Encefalite/complicações , Síndromes Epilépticas , Convulsões Febris , Adolescente , Canabidiol/uso terapêutico , Criança , Pré-Escolar , Dieta Cetogênica , Epilepsia Resistente a Medicamentos/classificação , Epilepsia Resistente a Medicamentos/diagnóstico , Síndromes Epilépticas/complicações , Síndromes Epilépticas/fisiopatologia , Humanos , Doenças do Sistema Imunitário/complicações , Lactente , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Convulsões Febris/classificação , Convulsões Febris/diagnóstico , Estado Epiléptico/classificação , Estado Epiléptico/diagnóstico
20.
Sci Transl Med ; 12(556)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32801145

RESUMO

Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF (n = 518) and GOF (n = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCNxA/CACNA1x family genes.


Assuntos
Canais de Cálcio , Preparações Farmacêuticas , Mutação de Sentido Incorreto/genética , Fenótipo , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...